Comparison of tracking algorithms for single layer threshold networks in the presence of random drift
نویسنده
چکیده
This paper analyzes the behavior of a variety of tracking algorithms for single layer threshold networks in the presence of random drift. We use a system identiication model to model a target network where weights slowly change and a tracking network. Tracking algorithms are divided into conservative and nonconservative algorithms. For a random drift rate of , we nd upper bounds for the generalization error of conservative algorithms that are O(2=3) and for nonconservative algorithms that are O(). Bounds are found for the Perceptron tracker and the least mean square (LMS) tracker. Simulations show the validity of these bounds and also show that the bounds are tight when is small and the number of inputs n is large. These results show that the Perceptron tracker and the LMS tracker can work well in slowly changing nonstationary environments.
منابع مشابه
Comparison of Tracking Algorithms for Single Layer Threshold Networks in the Presence of Random Drif - Signal Processing, IEEE Transactions on
This paper analyzes the behavior of a variety of tracking algorithms for single-layer threshold networks in the presence of random drift. We use a system identification model to model a target network where weights slowly change and a tracking network. Tracking algorithms are divided into conservative and nonconservative algorithms. For a random drift rate of , we find upper bounds for the gene...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملPerformance Bounds for Single Layer Threshold Networks when Tracking a Drifting Adversary
This paper finds upper bounds for the generalization error of three tracking algorithms when confronted with a worst case adversary. A system identification model is used where both the target and tracking network are single layer threshold networks, with the target weights changing slowly (the drift problem). Previous work considered random unbiased drifting adversaries. This paper focuses on ...
متن کاملNon-linear stochastic inversion of 2D gravity data using evolution strategy (ES)
In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 45 شماره
صفحات -
تاریخ انتشار 1997